
Model-Integrated Embedded Systems

Akos Ledeczi, Arpad Bakay, and Miklos Maroti

Institute for Software Integrated Systems
Vanderbilt University, Nashville, TN 37235

{akos,bakaya,mmaroti}@isis.vanderbilt.edu

Abstract. Model-Integrated Computing is a proven technology for de-
signing and implementing complex software systems. Making the design-
time models available at run-time benefits the development of dynamic
embedded systems. This paper describes a paradigm-independent, gen-
eral infrastructure for the design and implementation of model-integrated
embedded systems that is highly applicable to self-adaptive systems.

1 Introduction

Model-Integrated Computing (MIC) is a proven technology for designing and im-
plementing complex software systems [1]. Research at the Institute for Software
Integrated Systems at Vanderbilt University has clearly shown the advantages
of the model-based approach in a wide range of industrial, engineering and sci-
entific applications. The greatest advantages of this technology can be achieved
in application domains with these specific characteristics:

1. The specification calls for or allows hierarchical decomposition, either from
a single aspect or from multiple aspects: for example tasks/subtasks, spa-
tial/physical/hardware segmentation, units of commanding or supervision
responsibility, etc.

2. The complexity of the system precludes the success of any ad-hoc approach,
while careful analysis can identify relationships inside the computing envi-
ronment, along which a sensible modularization is feasible.

3. The computing system is required to change frequently, because of succes-
sive refinements of the algorithms applied (application prototyping phase),
because of changes in the computing infrastructure (e.g. hardware) or due
to continuous changes in the specification, as a consequence of the evolution
of the environment under control.

Remarkably, most embedded software development projects also feature one
or more of the above characteristics. Whether we consider the domain of con-
sumer electronics, telecommunications or military applications, they all face the
challenging problem of quickly, safely, and efficiently producing software for
changing requirements and computing infrastructure. Decomposition is a com-
mon technique here as well, while—due to the complexity and real-time nature



2

of the applications and the limited resources of the underlying infrastructure—
multiple aspects and a complex set of relations with different characteristics
must also be taken into consideration.

A significant part of embedded systems are also required to be fault-tolerant,
manageable, or even externally serviceable, both in the hardware and the soft-
ware sense. The model-based approach is definitely helpful in providing these
features, since the decomposition boundaries usually also identify standardized
access points for those operations.

As models are good tools for humans in understanding and creating complex
structures, they also have definite advantages if the system itself is expected
to be reflective, i.e. to be able to supervise its own operation. Eventually this
facilitates the creation of self-adaptive computing architectures, where automatic
adaptation itself is based and carried out on the well-understood models of the
embedded system.

The use of models or similar concepts for embedded, adaptive computing
has been investigated by other research groups as well [6]. Research at ISIS is
aimed at leveraging our experience in model integrated computing to create a
model-based embedded system infrastructure which is efficient in both its run-
time characteristics and the human effort required for development, verification
and systems management during the entire life cycle of the system [7]. Partly
to accomplish these and also because of additional requirements, design goals
also include platform and language independence, standards compliance, support
for multiple forms of networking capabilities, and extensibility for unforeseen
applications and requirements.

While most of the above requirements support each other in the sense that
conforming to one often helps to meet the others, one of them, probably the most
important one, run-time efficiency, tends to conflict with the others. Indeed this
constitutes the most challenging part of our research: finding optimal compro-
mises while porting elegant high-level programming concepts to an environment,
where efficiency and economical resource utilization remain the primary issues.

The research presented here was made possible by the generous sponsorship of
the Defense Administration Research Projects Agency (DARPA) under contract
(F30602-96-2-0227), and by the Boeing Company.

2 Model-Integrated Computing

Model-Integrated Computing (MIC) employs domain-specific models to repre-
sent the software, its environment, and their relationship. With Model-Integrated
Program Synthesis (MIPS), these models are then used to automatically synthe-
size the embedded applications and to generate inputs to COTS analysis tools
[11]. This approach speeds up the design cycle, facilitates the evolution of the
application and helps system maintenance, dramatically reducing costs during
the lifecycle of the system.

Creating domain-specific visual model building, constraint management, and
automatic program synthesis components for a MIPS environment for each new



3

domain would be cost-prohibitive for most domains. Applying a generic environ-
ment with generic modeling concepts and components would eliminate one of
the biggest advantages of MIC—the dedicated support for widely different ap-
plication domains. An alternative solution is to use a configurable environment
that makes it possible to customize the MIPS components for a given domain.

Model
Interpretation

MIPS Environment

Application
DomainApplication

Evolution
Environment

Evolution

Meta-Level
Translation

Metaprogramming
Interface

App.
1

App.
3

App.
2

Model Builder

Model Interpreters

Models

Formal Specifications

Fig. 1. The Multigraph Architecture

The Multigraph Architecture (MGA) is a toolkit for creating domain-specific
MIPS environments. The MGA is illustrated in Fig. 1. The metaprogramming
interface is used to specify the modeling paradigm of the application domain.
The modeling paradigm is the modeling language of the domain specifying the
objects and their relationships. In addition to syntactic rules, semantic informa-
tion can also be described as a set of constraints. The Unified Modeling Language
(UML) and the Object Constraint Language (OCL), respectively, are used for
these purposes in the MGA. These specifications, called metamodels, are used
to automatically generate the MIPS environment for the domain. An interesting
aspect of this approach is that a MIPS environment itself is used to build the
metamodels [2].

The generated domain-specific MIPS environment is used to build domain
models that are stored in a model database. These models are used to automati-
cally generate the applications or to synthesize input to different COTS analysis
tools. This translation process is called model interpretation.

3 Models in embedded systems

Modeling concepts available in the MultiGraph Architecture are suitable for
modeling real-time embedded systems. The principal aspect of these models is
the one describing the computational modules (tasks, objects) and the communi-
cation paths between them. This aspect is usually hierarchical by nature, where



4

leaf nodes of the hierarchy correspond to simple functional modules executed
under the kernel’s command. If the computing environment includes specialized
processing units, or soft-hardware components, those functions are also repre-
sented as nodes in this hierarchy [5].

Most modern kernels [8, 9] provide a wide range of inter-module commu-
nication links: messaging, shared memory, high-speed direct interconnections or
network connections. Likewise, the type of information transferred may also vary
in volume, priority, real-time characteristics (e.g. high/low volume, raw/buffered,
control/data etc.). Components may even have functional interconnections with-
out actually being connected directly at the lowest level.

The ability of the MultiGraph models to represent different aspects of the
same objects and different kinds of associations in each aspect makes it possible
to cope with these modeling issues. However, functional models are only part of
representing an embedded system. Other typical aspects may include modeling
a multi-processor and multi-node hardware infrastructure and the assignment
of functionality to the nodes. Modeling constraints can be of particular value
in these models for representing and managing resource limitations (e.g. power,
memory, bandwidth).

Other possible aspects to be modeled include persistent data object manage-
ment, timing relations, user interface elements (menus, screens), or state tran-
sition diagrams if applicable. Whether any of these modeling aspects should
really be used, depends on whether the kernel layer is able to use them or pass
them on to the functional layer. However, representing certain aspects can be still
useful without kernel support if they provide information to an external manage-
ment/supervisory application or to the evaluator component of a self-adaptive
system.

4 General structure of embedded model-integrated
systems

The basic structure of the proposed embedded model-integrated system is il-
lustrated in Fig. 2. The Embedded Modeling Infrastructure (EMI) can be best
viewed as a high-level layer at the top of the architecture, while a classical
embedded system kernel (e.g. a real-time kernel like [9]) is located at the bot-
tom. The component that connects these two layers is the translator that we
call the embedded interpreter. The embedded model provides a simple, uniform,
paradigm-independent and extensible API (EMI API) to this interpreter.

Besides the kernel, the modeling system (to be detailed later) and the em-
bedded interpreter, the fourth major component of the computing system is the
set of software modules that perform the actual task of the embedded system.
These are objects executable by the kernel and responsible for the core function-
ality of the system. The modeling system is not only able to instruct the kernel
to instantiate and execute a set of modules, but it also has means to describe
operational parameters for them.



5

Embedded Modeling
Infrastructure (EMI)

EMI API

Embedded Interpreter

RT Kernel

Embedded Application -Specific Modules

Applicatio n -Specific EMI Modules

Fig. 2. Embedded Model-Integrated System

These software modules are application-specific, and, since they constitute
the most computationally intensive part, performance is given a top priority
here. This priority is expected to dominate the selection of the programming lan-
guage used, so the embedded modeling system does not make any presumptions
about it: these modules are just native binary program modules with certain
documented characteristics.

While we find it inevitable to implement the core functionality as perfor-
mance optimized native application-specific modules, our purpose was to avoid
application-specific code in the Embedded Modeling Interpreter so that this
part would be readily reusable for new applications domains as well. However,
as discussed later (see Sect. “Self-adaptive EMI configurations”), practical ex-
perience has shown that while data structures carried by the models in the
system are able to represent the bulk of the application logic and other rele-
vant information, implementing certain parts (most notably the evaluator) in an
application-independent way yields only limited and/or problematical function-
ality. Consequently, it is preferable to implement these portions in an application
specific way.

5 Generative modeling and run-time modifications

In “traditional” model-integrated computing models are created at design time.
They describe a particular solution to a particular problem in the given engineer-
ing domain. Being able to work only with a fixed model configuration burned



6

into the system or loaded at boot-up would be a strict limitation on the power of
model-integrated computing. The EMI offers two techniques that allow models
to evolve during execution.

One is to represent dynamic architectures in a generative manner. Here, the
components of the architecture are prepared, but their number and connectivity
patterns are not fully defined at design time. Instead, a generative description is
provided which specifies how the architecture could be generated “on-the-fly”. A
generative architecture specification is similar to the generate statement used in
VHDL: it is essentially a program that, when executed, generates an architecture
by instantiating components and connecting them together.

The generative description is especially powerful when it is combined with
architectural parameters and hierarchical decomposition. In a component one
can generatively represent an architecture, and the generation “algorithm” can
receive architectural parameters from the current or higher levels of the hierar-
chy. These parameters influence the architectural choices made (e.g. how many
components to use, how they are connected, etc.), but they might also be prop-
agated downward in the hierarchy to components at lower levels. There the
process is repeated: architectural choices are made, components are instantiated
and connected, and possibly newly calculated parameters are passed down fur-
ther. Thus, with very few generative constructs one can represent a wide variety
of architectures that would be very hard, if not impossible, to pre-enumerate.

ConvolutionGamma
Correction Thresholding

ConvolutionSplit Merge

Convolution

Convolution

Split
And

Merge n = 3

Thresholding
Gamma

Correction

Fig. 3. Generative Modeling

As a simple example for generative modeling, consider a data parallel al-
gorithm, where the data set needs to be split N ways and the results need to
be merged. If N can change during runtime, instead of modeling the structure
for every possible instance of N , we can explicitly model the parameter N and



7

create a generator that does the split and merge operations (Fig. 3). Even if
models do not change at runtime, but they do change frequently at design time,
this generative technique provides a convenient approach to modeling.

Naturally, not every architectural alternative is viable in all circumstances.
The infrastructure allows for representing architectural descriptions that con-
strain the selection process, thus limiting the search needed while forcing the
process to obey other requirements.

Generative modeling naturally allows for system modifications along dimen-
sions fixed at design time. While this is sufficient for most applications, the EMI
can be configured to allow even more liberty in modifying running models. In
this mode, an external agent is allowed the same power to specify models as is
possible during the boot phase.

To be able to make arbitrary modifications, however, requires extensive kernel
support to safely deal with the transient effects and ensure integrity of scheduling
communications during system changes. This support is usually not universal,
and it is the responsibility of the external agent not to go beyond the abilities
of the kernel.

6 Self-adaptive EMI configurations

One of the design goals of the embedded modeling infrastructure is to provide
convenient support for self-adaptive computing. We define self-adaptive comput-
ing architecture as one that is able to measure and detect changes in its own
performance and respond to these changes by performing structural changes on
its configuration. According to this definition, an adaptive system must contain
monitoring, decision making, and configuration modification functionality. The
EMI system provides capabilities for each of these three tasks.

To facilitate the implementation of monitoring algorithms, convenient ac-
cess to operational parameters is required. Operational parameters in embedded
systems belong to one of two distinct categories:

– The momentary status of the embedded operating system itself: resource
utilization, timing relations, availability of peripherals and remote nodes in
a distributed system, etc.

– The parameters representing the performance of the application algorithms,
such as the control error rates of a control system, the amount of missed/
discarded packets of a communication system, cost functions, etc. A common
feature of these parameters is that they are application-specific, and their
values are usually highly dependent on the environment of the embedded
system.

Our decision was to use the embedded models as a place for uniform represen-
tation of these parameters. Objects in the model may have designated attributes
(monitor attributes) set by the underlying modules: either by the embedded ker-
nel (in case of most operation system parameters), or by any of the application
specific task modules that have information on the operation of the algorithm.



8

The third component, configuration modification, is supplied by generative
models and generators described in the previous chapter. This allows, the model
designer to efficiently control the degrees of freedom in the model by providing
generators where adaptive modifications in the model are foreseen. This decision
also reflects the fact that self-adaptive modifications are usually similar or iden-
tical to alterations executed by an external management system (or a human
operator) on a non-self-adaptive system. Model changes made by the generators
are translated towards the kernel by the embedded interpreter.

The most critical component of self-adaptive applications is the one making
reconfiguration decisions. In our embedded infrastructure, this is the evaluator, a
kernel process itself, which is responsible for interpreting the monitor parameters
and for setting architectural parameters for the generators. It is obvious that,
depending on the complexity of the application domain and level of adaptivity
implemented, the knowledge of such an evaluator may range from some simple
mapping operations to real intelligence comparable to that of a human expert.
This also means that the programming model may be chosen from a wide range
of alternatives: data tables, procedural code, data-flow network, or some more
esoteric techniques, such as genetic algorithms or neural nets.

These considerations led us to leave the selection of the evaluator to the
application designer: from the EMI system’s point of view, the evaluator is a
native module accessing the model through the standard EMI API. It is expected
to take input primarily from the monitor parameters in the model, and produce
its outputs by setting the values of the generator parameters.

The evaluator is a full-fledged task of the kernel, thus nothing inhibits it from
interacting with the kernel and with other modules. While this form of direct
access may not be an elegant programming practice, we believe that it is helpful if
special interactions are required that cannot be efficiently implemented through
the monitor variables (e.g. large amount of data, I/O access etc.). Another use
of direct communication is the case where the evaluator itself is not monolithic,
but rather consists of several tasks communicating with one another.

While we find native application-dependent evaluators necessary and effi-
cient, certain tasks may be implemented by standard modules where no native
application-specific programming is needed. Upon initial investigation, adaptive
responses to events in the operating system itself (node down, timing specifica-
tions not met, etc.) seem to be an area where a parameterized, but otherwise
application independent solution may be feasible. We are currently seeking a
technique to model evaluator functionality for these problems.

7 Operation of the EMI

Figure 4 presents a detailed view of the embedded model-integrated architecture
extended with constructs supporting self-adaptivity. The Embedded Modeling
Infrastructure (EMI), which is the focus of our research, has the following func-
tions:



9

– Loading the initial version of the model from an external source (typically a
modeling/management computer) or from some internal storage facility,

– Booting the embedded system based on the model loaded. This includes
executing the built-in generators, which, in-turn, create the dynamic parts
of the model through the embedded interpreter,

– Checking model constraints and implementing emergency measures in case
of failures,

– In the case of self-adaptive systems, evaluating the operation of the embed-
ded programming modules and setting generative parameters accordingly.
Again, the model generators are tasked to implement these changes on the
model itself,

– Receiving and executing model updates from external sources, and
– Communicating status information to external management agents.

Embedded Modeling
Infrastructure (EMI)

EMI API

Embedded Interpreter

RT Kernel

Embedded Application -Specific Modules

Generators

XML

co
nst
rai
nts

par
am
ete
rs

Evaluator

Decoder/Encoder

Constraint Manager

Design-Time MIC Environment

Fig. 4. Self-Adaptive Embedded System

During the load/boot phase the EMI builds the data structures of the ini-
tial model and, based on this information, instructs the kernel to instantiate



10

the computing objects accordingly. Generators execute and generate the struc-
ture that corresponds to the initial status of the generative parameter objects.
Generators are hybrid objects. While they are part of the embedded model, the
compiled object code of the generator scripts cannot be represented as paradigm
independent modeling objects in the EMI. These scripts, therefore, are located
outside of the EMI. Note that they use the same EMI API as, for example, the
embedded interpreter. From a programmers point of view, generative modeling
and interpreter implementation are similar activities.

The Constraint Manager is a module responsible for ensuring that model-
ing constraints are met. There are two principal questions about constraints:
when to check them, and what to do when (resulting from modifications by the
self-adaptive control loop or from external modification commands) they are vi-
olated. The answer to these questions is highly application dependent, therefore,
the Constraint Manager is designed to be a flexible component with its own
API. The evaluator, for example, can request constraint checking for any subset
of constraints and/or models at any time.

Network model loading functionality and other forms of external communi-
cations are detailed in the following section.

8 Communications

Since the proportion of network-enabled embedded systems is constantly on the
rise, we find it essential for the model-based architecture to fit into a networked
environment. Our goal is to provide the following functions over the network:

– Model download,
– Model queries, including attributes subject to modification by the embedded

system (status/operational information),
– Initiating run-time model modifications,
– Sending notification or alarm messages from the embedded system,
– User-interface-like input/output communication, and
– Interprocess communication and remote function calls in case of distributed

embedded systems.

In addition to the above, we envision the future addition of features that
support the distributed operation of model-based systems.

Our most important goal in designing the communication interface was to
find technologies that can cover most of the above tasks, thus making the imple-
mentation of communications relatively simple and lightweight (especially from
the resource utilization point of view on the embedded system’s side).

Standard compliance was another goal with the promise of easy communica-
tion to other open-protocol systems (web-browsers, management stations) and
the ability to reuse publicly available solutions to implement them.

When designing networked applications, there is a pretty obvious but some-
what drifting division line in the hierarchical layers of the OSI reference model:



11

lower levels usually belong to the ‘infrastructure’, while higher levels are typi-
cally handled by the application [10]. While the EMI system is an infrastructure
in itself, from the networking point of view it is positioned as an application of
the underlying operating system. This means that for the lower levels we rely
on operating system support, or support by an external communication library.
Since for most practical cases (serial line, TCP/IP) good packages are available,
this saves a lot of work, and enables us to focus on the higher level interfaces
(presentation layer or above).

For the transfer syntax of the presentation layer protocol, the Extensible
Markup Language (XML [3]) was selected. This young, but already widely
adopted and continually developed presentation technology is a good fit to our
needs. XML provides a presentation layer, but the structure of the information
carried also needs to be further defined. This process usually involves the defini-
tion of a schema (DTD) above XML. Since there is currently no standard data
format for our specific application domain (models of information systems and
especially embedded software models), we defined a schema based on our expe-
rience and specific needs. In case a standard schema emerges, we expect it fairly
straightforward to convert our system to support it. Even in this case, there will
likely be specific issues to be addressed as extensions of the standard schema.

Given XML as the selected presentation transfer syntax, we tried to sim-
plify the implementation of the networking functions by creating a uniform,
application-level protocol above it as well. This protocol is based on communi-
cating sections of the model tree. To enable subsequent modifications, the XML
schema is extended so that objects can not only be added, but other editing op-
erations (e.g. update, delete, move) also become available. Management is also
provided by means of the model representation, where the management agent is
able to query any desired section of the actual model tree. The same technology
can also be applied for building user interfaces where a part of the model tree is
sent to/from the user agent that provides a schema interpreter for appropriate
visualization.

While we found the strict adherence to an appropriate presentation technol-
ogy crucial, relying on external networking services at the lower levels makes
us independent of the type of networking used, which practically means, that
the infrastructure is able to communicate both over a simple serial line and a
complete TCP/IP or OSI protocol stack [10].

When using TCP/IP, we still had to make some decisions about the transfer
protocol used. HTTP has been selected (with the embedded system playing
role of an HTTP server), partly because of its popularity (a simple browser can
connect to the modeling system) and also because of the availability of practically
transparent secure communication (SSL/TLS). These advantages made other
researchers create similar solutions.

With our stated goal of manageability, existing management protocols must
not be completely neglected. Unfortunately the ruling management protocol
(SNMP) is not XML-based, but uses another presentation technology (ASN1/
BER) instead. Nonetheless, we are committed to provide SNMP compliance in



12

the future, either by the embedded model infrastructure itself, or by providing a
proxy to translate between SNMP and our XML-based communication system.

Of course the initial version of the embedded modeling infrastructure we
are currently working on will not support all these functions at the same time.
However, we intend to build the backbone of the networking architecture: the
services to parse and generate XML data, and the underlying HTTP support,
which in turn relies on the TCP/IP networking support available in our current
development platform. These will be sufficient to provide the most important
networking functions: the downloading of models and reconfiguration commands
to the embedded system, and providing access to the system status for XML
capable browser clients. We are also confident, that the architecture makes it
fairly straightforward to extend the capabilities for other protocols, in case there
is low-level support available in the kernel or an external library.

9 Application example

The model-based approach is a suitable for implementing most embedded sys-
tems, since it provides a well-identified object of focus both for designing the ar-
chitecture and for analyzing the status of a running application. These features
are getting even more important, if run-time configurability and adaptability are
part of the requirements. Among the many possible applications are the differ-
ent kinds of multi-channel multi-function data analysis systems, an example of
which is outlined below.

The example system is used for screening radio signals, i.e. detect and analyze
signals from unknown sources (Fig. 5). It is a distributed architecture containing
groups of aerial dishes. Each aerial is connected to a wideband data-filtering unit.
Wideband units have a fixed architecture that enables them to detect frequencies
that exceed a given threshold of intensity, cut out selected signals and forward
them, with significantly reduced bandwidth, on high-speed network channels.
These signals are processed by low-bandwidth signal-processing units (analysis
units), that identify the encoding type (AM/FM/PCM), decode the data, and
depending on its type (voice, music, data or unknown/encrypted data) perform
further analysis, and/or store them on a recording device.

On a separate input, the system continually receives a list of frequencies
currently used by known/friendly communication that are not to be analyzed.
For the unknown ones however, it may be necessary to combine several signals
(e.g. signals from different aerials) before analysis. The number of signals under
simultaneous analysis tends to be vary, and so do the types and resource require-
ments of the operations used to analyze them. The system is definitely unable
to handle all data under all circumstances.

The number of all components (aerials, wideband units, analysis units) varies
depending on the deployment configuration. In addition, any of the components,
as well as communication lines between the components are prone to failure,
leaving the system mangled or separated.



13

Signal analyzer #1

Aerial

Aerial

Aerial

Wideband unit #1

Aerial

Aerial

Aerial

Wideband unit #2

Aerial

Aerial

Aerial

Wideband unit #3

Signal analyzer #2

Recorder #2

Recorder #1

Known frequencies,
Parameters, control

KernelKernel

Fig. 5. Radio signal analysis architecture

As mentioned above, there is a significant difference in intelligence between
the wideband and the analysis units. The former are fixed architecture, externally
managed devices that operate on external commands to select the frequencies to
be separated. The signal analysis units on the other hand are versatile, embedded
computers operating on a real-time, multiprocess kernel [9]. So, it is the task of
the signal-processing units to decide which signals are to be analyzed, and also
to configure wideband units, distribute analysis tasks among each other, and
to start up the necessary analysis algorithms. Although the network topology
makes several units able to receive data from each of the wideband units, network
bandwidth is also a resource to economize on.

Although the environment described above is not an existing system, we
believe that it realistically contains most features expected from an up-to-date
signal-processing infrastructure.

The proposed model-based approach calls for modeling the system from sev-
eral aspects. First, the static architecture of the hardware components are mod-
eled:

– Aerials: location, direction, type, availability
– Wideband units: model description (channel number, sensitivity), aerials

connected (represented by connections in the model), network identifier
– Signal processing units: model description (number of processors, memory,

network interfaces), network identifier
– Recording devices: channel number, network identifier, data speed
– Network links: bandwidth, connected units

Another aspect of the system is the run-time status of its components:

– their availability status,



14

– for the wideband units the active threshold, the selected frequencies, and the
associated network channels

– the enabled channels on the recording device
– the utilization factors of the network links

This kind of data is stored as dynamic attributes added to the architectural
model.

The status of the signal processing units is a more complex collection of
information, thus it is stored in a separate modeling category, and linked to the
architectural model by references only. This category includes:

– the currently selected frequencies, with timing, priorities, signal description
data, and reference to the processes/recorders associated. This also contains
frequencies for which analysis has been skipped due to unavailable resources.

– The list of friendly frequencies whose analysis is to be suppressed.
– the status of processes in each unit, along with their timing characteris-

tics, resource allocations and reference to the frequency (frequencies) being
analyzed.

– Other operational characteristics that describe the overall status of the sys-
tem: the load system factor and the availability of resources.

As expected, the models describe the startup and the operation of the ar-
chitecture. The static architecture data forms the ‘skeleton’ of the modeling
information. This is to be assembled by a human expert (using related tools
described in [2]), to reflect deployment configuration of the system.

The dynamic attributes of the model are initialized to reasonable defaults.
The startup model also contains information on those processes that are expected
to be running in the initial state of the system. When the model is read dur-
ing startup (from internal storage or via a network session), the corresponding
processes are automatically started with the supplied operational parameters.

The embedded model remains a central component of control reconfiguration
during the further operation of the system as well. A process that is responsible
for evaluating new frequencies will insert a new modeling object (atom) for each
new frequency found. At the same time, this object is also assigned estimated
attribute values for priority and resource usage (discussed below in detail).

The appearance of a new object triggers a generator to create a new analysis
process object in the model, eventually creating a new process in the real-time
kernel. This will start the analysis the data, and while doing that, it will set
attributes in the model to represent the type of data found and the success rate
of the analysis. If the contents of the data indicates that it is worth recording,
another modeling object is generated that will result in a recorder channel being
opened. In case there are several analysis units available, the system assigns the
analysis task to the one which has sufficient resources available and which has a
connection of sufficient bandwidth towards the data emitter wideband unit.

Different types of encoded information are to be processed by different al-
gorithms. So if the evaluator component in the model finds that the data type



15

detected needs a special analyzer (e.g. fax data decoder), it will insert a new
object into the model to startup a new process.

If an analysis task is not discarded earlier, when signal strength decays below
a given level, the process initiates termination by removing/inactivating objects
in the model. This will result in switching off the corresponding frequency or
frequencies in the wideband unit and removing the process used for analysis.

Assigning analysis tasks get more challenging when the evaluator runs into
resource limitations, e.g. all nodes run out of process tables, free memory, or
their load factor indicates, that they cannot accept further tasks. The evaluator
calculates a so-called gain value for each of the frequencies analyzed. A simple
formula for gain value Gi of the frequency i is

Gi = Pi/max(
Ti
Tall

,
Mi

Mmax
,
Bi
Bdir

)

where Pi is the priority of the frequency, Ti is the is the processing time (or
estimated processing time) used for the frequency i, Tall is the total processing
time, Mi is the approximate memory allocation, Mmax is the memory available
for the most powerful node in the system, and Bi is the bandwidth utilization,
which is compared to the total bandwidth Bdir available in that direction. The
gain function is purposely simple, since the calculation and (in case of not-yet
analyzed frequencies) the estimation of the input values for the equation are
rather inaccurate anyway.

The utility function enables the evaluation to select the most important anal-
ysis tasks, and drop the rest. Since the function incorporates the bandwidth
availability between the data source and the processing nodes, it is calculated
for the best node initially, yielding the possibly highest gain value. It is auto-
matically recalculated if the processing is about to be assigned to another node.

Before a frequency is analyzed, the gain value is based on estimation. For
running processes however, gain value is calculated for actual (measured) re-
source usage. This can lead to the election of frequencies that are later discarded
based on high resource usage, which practically results in the waste of resources.
This side-effect may be reduced by including an additional ‘entry cost’ for new
frequencies (or by simply providing somewhat pessimistic estimates), but it is
obvious that a more thorough pre-analysis step might be necessary to provide
more realistic gain value estimates.

The mechanisms outlined above suggest, that even if the system is distributed
(in terms of containing several analysis nodes), the high-level model-based con-
trol operates in a centralized manner. This is true, since the cooperation of the
nodes is based on an elected master policy: while each analysis unit has the ca-
pabilities to do the modeling decisions by itself, a single node from among them
will always have the authority to coordinate the operation of the whole system.

All units, however, contain a replica model of the static modeling informa-
tion, which is set up during startup and evolves through later operations initiated
by external sources (most notably, the static architectural model, and the list of



16

friendly frequencies). This information is used in case of system breakdowns: if a
group of processing nodes determine that they have lost contact to the modeling
master, they elect a new master (this process is simply based on preset prior-
ities). This new master first determines the available architecture: availability
of wideband, analysis, and recording units, along with the usable network links,
and then restarts the assignment of frequencies among the remaining nodes.
This scheme works both for broken analysis units and for separated network
topologies.

The presented scheme for distributed operation may be considered somewhat
rudimentary in the sense, that the change of the elected master node practically
causes a complete restart in the analysis process. Another possible alternative
would be to decentralize the modeling operations, thus making smooth transi-
tions feasible. The primary reason for not going this way is that the processing
overhead of a distributed model is significantly higher even for a single node, not
to mention a group of nodes all repeating identical operations. The other reason
is that we consider component breakdowns highly exceptional events: the fact
that the system automatically resumes operation seems to be sufficient for all
practical cases.

10 Conclusion

Migrating model-integrated computing from design-time towards run-time helps
in the design and implementation of dynamic embedded systems. The presented
Embedded Modeling Infrastructure is a paradigm-independent, general frame-
work that is highly applicable to reconfigurable architectures. This configurabil-
ity is a necessary precondition for self-adaptivity, and we demonstrated a way
to incorporate adaptive behavior.

Self-adaptivity can have different manifestations, ranging from systems that
are able to put themselves into either of two “modes of operation”, to ones
that generate a significant portion of their code “on the fly” and operating in
ways never planned by their designers. Although the latter approach seems to
be intellectually more challenging, we find that application areas where em-
bedded systems are used (telecommunications, vehicles, high-risk environments)
are unlikely to become customers for such unpredictable (and practically not
testable) behaviors in the foreseeable future. That is why both the proposed
system architecture and the demonstrated example application exhibit just a
limited, designer-controlled form of self-adaptability.

Finally it is important to point out, that self-adaptivity is not the only gain
in following the proposed model-based approach. Architectures based and op-
erated on models also offer significantly improved manageability, serviceability
and configurability, features welcome in practically all possible application areas
of embedded and self-adaptive systems.



17

References

1. Sztipanovits J., Karsai G.: Model-Integrated Computing. IEEE Computer, April,
1997

2. Nordstrom G., Sztipanovits J., Karsai G., Ledeczi, A.: Metamodeling - Rapid De-
sign and Evolution of Domain-Specific Modeling Environments. Proceedings of
the IEEE Conference and Workshop on Engineering of Computer Based Systems,
April, 1999

3. Bradly, N.: The XML Companion. Addison-Wesley, 1998
4. Ledeczi, A., Karsai, G., Bapty, T.: Synthesis of Self-Adaptive Software. Proceedings

of the IEEE Aerospace Conference, March, 2000 (to appear)
5. Bapty T., Sztipanovits J.: Model-Based Engineering of Large-Scale Real-Time Sys-

tems. Proceedings of the Engineering of Computer Based Systems (ECBS) Con-
ference, Monterey, CA, March, 1997

6. Oreizy, P. et al.: An Architecture-Based Approach to Self-Adaptive Systems. IEEE
Intelligent Systems and their Applications Journal, May/June 1999

7. Karsai, G., Sztipanovits J.: Model-Integrated Approach to Self-Adaptive Software.
IEEE Intelligent Systems and their Applications Journal, May/June 1999

8. Tornado/VxWorks operating system by the WindRiver System.
http://www.windriver.com/products/html/vxwks54.html

9. The ChorusOs Operating System. http://www.sun.com/chorusos
10. Larmouth, J.: Understanding OSI. International Thomson Computer Press, 1996,

ISBN 1-85032-176-0

11. Davis, J., Scott, J., Sztipanovits, J., Karsai, G., Martinez, M.: Integrated Analysis
Environment for High Impact Systems. Proceedings of the Engineering of Com-
puter Based Systems, Jerusalem, Israel, April, 1998


